Variance estimation for clustered recurrent event data with a small number of clusters.
نویسنده
چکیده
Often in biomedical studies, the event of interest is recurrent and within-subject events cannot usually be assumed independent. In semi-parametric estimation of the proportional rates model, a working independence assumption leads to an estimating equation for the regression parameter vector, with within-subject correlation accounted for through a robust (sandwich) variance estimator; these methods have been extended to the case of clustered subjects. We consider variance estimation in the setting where subjects are clustered and the study consists of a small number of moderate-to-large-sized clusters. We demonstrate through simulation that the robust estimator is quite inaccurate in this setting. We propose a corrected version of the robust variance estimator, as well as jackknife and bootstrap estimators. Simulation studies reveal that the corrected variance is considerably more accurate than the robust estimator, and slightly more accurate than the jackknife and bootstrap variance. The proposed methods are used to compare hospitalization rates between Canada and the U.S. in a multi-centre dialysis study.
منابع مشابه
Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm
Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...
متن کاملEstimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. W...
متن کاملParametric Estimation in a Recurrent Competing Risks Model
A resource-efficient approach to making inferences about the distributional properties of the failure times in a competing risks setting is presented. Efficiency is gained by observing recurrences of the compet- ing risks over a random monitoring period. The resulting model is called the recurrent competing risks model (RCRM) and is coupled with two repair strategies whenever the system fails. ...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملChoosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation
1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 24 19 شماره
صفحات -
تاریخ انتشار 2005